

Annual BIOEAST Bioeconomy Conference 9 - 10 April 2025, Bucharest, Romania

Innovation in Advanced Bioactive Biomaterials for 3D Printing

Alina BUTU^{1,2}, Izabela Cristina STANCU², Steliana RODINO^{1,3}, Marian BUTU^{1,3}

¹National Institute of Research and Development for Biological Sciences ²National University of Science and Technology Politehnica of Bucharest ³The Research Institute for Agricultural Economics and Rural Development

Abstract

• Recent advances in **3D printing technologies** have significantly expanded the possibilities in **biomedical engineering**, especially through the development of advanced **bioactive biomaterials**.

Results & Discussion

Potential of Agro-Industrial By-Products in Bioactive Biomaterials
Rich Source of Bioactive Compounds

• This review explores the latest **innovations** in the **design**, **synthesis**, and **application** of bioactive materials tailored for 3D printing, with a focus on their role in **tissue engineering**, **regenerative medicine**, and **personalized healthcare solutions**.

• We examine categories such as **bioceramics**, **natural and synthetic polymers**, **composite hydrogels**, and **bioinks** enhanced with **nanoparticles** or **biologically active agents**.

• Key criteria such as **biocompatibility**, **printability**, **mechanical stability**, and **biodegradability** are discussed in relation to their suitability for **additive manufacturing processes**.

• The integration of smart functionalities - such as antimicrobial activity, controlled drug release, or cell signaling modulation - is highlighted as a transformative trend in the development of next-generation biomaterials.

- Enhanced Functional Properties
- Integration into Polymeric Matrices for 3D Printing
 - Synergy of Natural and Synthetic Polymers
 - Improved Biocompatibility
 - Structural Integrity in 3D Printing

Advantages of Bioactive 3D-Printed Biomaterials

- Biocompatibility
- Bioactivity
- Controlled Degradation
- Mechanical Stability

Торіс	Key Findings	Discussion	Examples
Material	Bioactive materials show	Enhanced rheological	Composite hydrogels with
Performance	improved printability and	properties contribute to	nanocellulose or graphene oxide
	mechanical properties	structural fidelity and	improve both stiffness and cell
		functional performance	adhesion
		post-printing	
Biological	High biocompatibility	Supports tissue integration	GelMA and alginate blends
Response	and cell viability	and promotes <i>cell</i>	support stem cell growth and
	observed across multiple	proliferation and	osteogenic differentiation
	studies	differentiation	
Functional	Smart functionalities	Antimicrobial and drug-	Bioinks with silver nanoparticles
Integration	successfully incorporated	releasing properties increase	or encapsulated antibiotics
	in experimental models	therapeutic potential	prevent infection post-
			implantation
Challenges in	Material scalability and	Lab success does not	Compliance testing and GMP
Translation	regulatory approval	guarantee <i>clinical or</i>	manufacturing limitations slow
	remain significant hurdles	commercial adoption	down market entry
		without long-term validation	
Research Gaps	Limited data on long-term	Further <i>in vivo and clinical</i>	Lack of longitudinal studies with
	in vivo performance and	studies are needed to ensure	large animal models or human
	degradation profiles	material safety and	trials
		functionality	
Future	Combining bioprinting	Potential to accelerate	Use of AI to predict material
<i>Opportunities</i>	with AI and machine	discovery of tailor-made	behavior and optimize scaffold
	<i>learning</i> for material	bioinks for personalized	architecture automatically
	design and optimization	medicine	

Underutilized

Resources

Methodology

Circular

Economy

Alignment

PRISMA 2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

The methodology was structured to ensure transparency and reproducibility in the identification, selection, and synthesis of relevant literature concerning bioactive biomaterials for 3D printing in biomedical applications.

Sustainable

Solutions

Literature Search Strategy

- multiple databases: PubMed, Scopus, Web of Science, and Google Scholar
- covering the period January 2015 to December 2024
- the search terms: combinations of keywords such as "bioactive biomaterials," "3D bioprinting," "bioceramics," "bioinks," "hydrogels," "tissue engineering," and "regenerative medicine"
- boolean operators (AND, OR) were used to refine search results and increase specificity.

Inclusion Criteria

- Peer-reviewed articles published in English
- Focus on the synthesis, characterization, or application of bioactive materials in 3D printing
- Relevance to biomedical fields, particularly tissue engineering and regenerative medicine
- Discussion of key properties such as biocompatibility, printability, mechanical stability, biodegradability, and smart functionalities

Exclusion Criteria

- Non-biomedical applications
- Non-peer-reviewed articles, editorials, or conference abstracts
- Duplicates or studies lacking methodological clarity

Study Selection and Data Extraction

• **two independent reviewers** who screened the titles and abstracts for relevance; disagreements were resolved through discussion or consultation with a third reviewer

Critical Appraisal and Synthesis

• focused on performance metrics (e.g., mechanical properties, degradation rate), bioactivity, and potential for clinical translation

The results of this study highlight the potential of **underexploited agroindustrial bioresources** for obtaining **valuable bioactive compounds** with applications in skin regeneration biomaterials.

- The developed polymeric compositions exhibit optimal properties for 3D printing and favorable interactions with skin cells, supporting the advancement of new therapeutic strategies.
- Suture studies will focus on evaluating the performance of these biomaterials in advanced experimental models.

m Acknowledgements

This work was supported by the Program NUCLEU 7N/2023 within the framework of the National Research Development and Innovation Plan 2022-2027 and project Cellu4Heal, ERANET-M-3